Now you are in the subtree of Physics public knowledge tree. 

References

Note that references will be updated during the course.

  • Fetter, A. L. and Walecka, J. D. “Quantum theory of many-particle systems”. Dover (2013).
  • Bruus, H., and K. Flensberg. “Many-body quantum theory in condensed matter physics”. Oxford University Press (2004).
  • Negele, J. W. and H. Orland. “Quantum many-particle systems”. Addison-Wesley (1988).
  • Nolting, W. “Fundamentals of Many-body Physics”. Springer (2009).
  • Nayak, C. Many-Body Physics lecture notes
  • Baym, G. and L. P. Kadanoff. “Conservation laws and correlation functions”. Phys. Rev. 124.2 (1961) 287.
  • Baym. G. “Self-consistent approximations in many-body systems”. Phys. Rev. 127.4 (1962) 1391.
  • Haussmann, R. “Self-consistent quantum-field theory and bosonization for strongly correlated electron systems”. Springer (2003).
  • Hedin, Hedin, L. “New method for calculating the one-particle Green's function with application to the electron-gas problem”. Phys. Rev. 139 (1965) A796.
  • Gross, E. K. U. and E. Runge, and O. Heinonen, “Many-particle Theory”. Taylor & Francis (1991).
  • Kittel, C. “Quantum Theory of Solids”. Wiley (1963).
  • Anderson, P. W. “Basic Notions in Condensed Matter Physics”. Benjamin (1984).
  • Goldenfeld, N. “Lectures on phase transitions and the renormalization group”. Addison-Wesley (1992).
  • Ziman, J. M. “Principles of the Theory of Solids”. CUP (1972).
  • Toulouse, J. “Introduction to many-body Green-function theory”. Lecture notes (2015) [PDF].
  • Maciejko, J. “An Introduction to Nonequilibrium Many-Body Theory”, Lecture notes (2007).
  • Shankar, R. “Renormalization group approach to interacting fermions”. Rev. Mod. Phys, 66 (1994) 129.
  • Shankar, R. “Bosonization: How to make it work for you in condensed matter physics”. Acta Phys. Polon. B26 (1995) 1835.
  • Fulde, P. “Correlated electrons in quantum matter”. World Scientific (2012).
  • Zagoskin, A. M. “Quantum Theory of Many-Body Systems”. Springer (1998).
  • Wagner, M. “Unitary Transformations in Solid State Physics”. Elsevier Science (1986).
  • Martin, R. M., L. Reining and D. M. Ceperley. “Interacting Electrons: Theory and Computational Approaches”. Cambridge University Press (2016).
  • Fradkin, E. “Field Theories of Condensed Matter Physics”. 2nd ed. Cambridge University Press (2013).
  • Bernevig, B. A. and T. L. Hughes. “Topological Insulators and Superconductors”. Princeton University Press (2013).
  • Dupuis, N. “Quantum Statistical Physics”. Lecture notes (2012).
  • Georges, A. “Strongly Correlated Electron Materials: Dynamical Mean‐Field Theory and Electronic Structure”. AIP Conf. Proc. 715(1) (2004) .
  • Doniach, S., and E. H. Sondheimer. “Green's functions for solid state physicists”. World Scientific (1998).
  • Pines, D. “Elementary excitations in solids”. Perseus (1966).
  • Berges, J. “Nonequilibrium Quantum Fields: From Cold Atoms to Cosmology” [arXiv:1503.02907].
  • Sólyom, J. “Fundamentals of the Physics of Solids”. vols 1-3. Springer (2007).
  • Nagaosa, N. “Quantum field theory in condensed matter physics”. Springer (2013).
  • Nagaosa, N. “Quantum field theory in strongly correlated electronic systems”. Springer (1999).
  • Stoof, H. T. C. , et al. “Ultracold quantum fields”. Springer (2009).
  • Forster, D. “Hydrodynamic Fluctuations, Broken Symmetry, And Correlation Functions”. Westview Press (1995).
  • Kopietz, P. et al. “Introduction to the Functional Renormalization Group”. Springer (2010).
  • Uzunov, D. I. “Introduction to the Theory of Critical Phenomena. Mean Field, Fluctuations and Renormalization”. World Scientific (1993).
  • Altland, A. and Simons, B. D. “Condensed Matter Field Theory”. Cambridge University Press (2nd Ed., 2010).
  • Amit, D. J., and V. Martin-Mayor. “Field theory, the renormalization group, and critical phenomena: graphs to computers”. World Scientific (2005).
  • Sethna, J. “Statistical Mechanics: Entropy, Order Parameters and Complexity”. Oxford University Press (2006).
  • Schwabl, F. “Statistical Mechanics”. Springer (2006).
  • Scheck, F. “Statistical Theory of Heat”. Springer (2016).
  • Economou, E. N. “Green’s functions in Quantum Physics”. Springer (2006).
  • Galperin, Y. M. “Introduction to Modern Solid State Physics” [PDF].
  • Simon, S. H. “Lecture Notes for Solid State Physics” [PDF].
  • Jülich lecture notes for Autumn school on correlated electrons: webpage.
  • Tong, D. “Statistical Physics”. Lecture notes (2012).
  • Merhav, N. “Information Theory and Statistical Physics”. Lecture notes [arXiv:1006.1565].
  • McKay, D. J. C. “Information Theory, Inference and Learning Algorithms”. Cambridge University Press (2003).
  • Decoster, A. “Variational principles and thermodynamical perturbations”. J. Phys. A 37.39 (2004) [DOI].
  • Sólyom, J. “Fundamentals of the Physics of Solids: Vol. 1: Structure and Dynamics”. Springer (2007).
  • Sólyom, J. “Fundamentals of the Physics of Solids: Vol. 2: Electronic Properties”. Springer (2009).
  • Sólyom, J. “Fundamentals of the Physics of Solids: Vol. 3: Normal, Broken-Symmetry, and Correlated Systems”. Springer (2010).
  • Jishi, R. A. “Feynman diagram techniques in condensed matter physics”. CUP (2013).
  • Mazenko, G. F. “Nonequilibrium statistical mechanics”. Wiley (2008).