Landau-Fermi liquid of helium-three
general
- What happens to Liquid Helium 3 very low Temperatures? By E. R. Dobbs, London ++++++
https://onlinelibrary.wiley.com/doi/pdf/10.1002/phbl.19760321214
Normal 3He: an almost localized Fermi liquid
New microscopic description of liquid 3He Authors JP Bouchaud, C Lhuillier
Landau’s theory of Fermi liquids
Florian Deman, Danil Platonov, Mobin Shakeri
https://phas.ubc.ca/~berciu/TEACHING/PHYS502/PROJECTS/FeLi.pdf
- Abrikosov-Khalatnikov Fermi liquid for Helium-3
$k_{He3} = 0.76 * 10^8 cm^{-1}$
$m_{eff} = 1.43 * m_{He_3} $
..... Fermi liquid parameters
- $\rho_{He^3} = m_{He^3} \frac{k_F^3}{3 \pi^3}$
$m_{He^3} = 6.64*10^{-24} g$, then $k_F \simeq 0.7*10^8 cm^{-1}$
- effective mass $m^\star_{He^3}$
specific heat slope $\frac{C}{T} \equiv \gamma \simeq 3 cal/(mole*deg^2)$ experimentally
as well as $\gamma = \frac{k_F m_F^\star}{3 \hbar^2}$
Therefore $m^\star_F = ?* m_{He^3}$
SNSs
- can we calculate the mass density of Glassons? what fraction of the total density is it?
from $k_F$ and $m_F$ we should be able to calculate the mass density of glassons.
Then compare with the density of $He^3$ as well as the density of amorphous solid!
fermion-glasson mass seems to be 1-2 order of magnitude LIGHTER THAN a light atom like helium-3
-
density of fermions and their effective size
$ k_F \sim 1/a $ where $a$ is the interparticle distance