History & Comments
Back
a
Author:Mihail Turlakov
Description:
Description:
# Fine dipole moment - numbers ## Fine dipole moment $\alpha_{QED} = \frac{e^2}{\hbar c} = \frac{d_{QED}^2}{a_B^2 \hbar c}$ this is the definition of fine dipole moment depending on the length $a$ between charges $e$. The lengtha can be taken either as $a_B$ https://en.wikipedia.org/wiki/Bohr_radius or https://en.wikipedia.org/wiki/Classical_electron_radius The dimensionality of dipole squared is $d^2=erg*cm^3$ ## imagine that there are no free charges, but only dipole interactions - let us compare with fine coupling in low-T glasses $\alpha_{QSNS} = P \frac{\gamma^2}{\rho c_t^2}$ where $P=\frac{1}{erg*cm^3}$, $\gamma=erg$, and $\rho c^2= erg/cm^3$ To write down explicit dipole moment, we need to introduce length $\xi$ $\frac{\hbar c}{\xi} = \frac{\gamma^2}{\rho c_t^2} \frac{1}{\xi^3}$, therefore $\xi=\gamma \sqrt{\frac{1}{\hbar \rho c_t^3} }$ $\xi \sim 50A \sim 10* a_B$ Therefore $d^2_{QSNS} = P \gamma^2 \xi^6$ ## compare $d^2_{QSNS}$ and $d^2_{QED}$ - this ratio $d^2_{QSNS}/d^2_{QED}$ implicitly depends on the ratio $a_B/\xi$ ## analogies $a_B^2 \hbar c \rightarrow \rho c_t^2 \xi^6$ speculatively on the dimensionality basis $\hbar \rightarrow \rho c_t \xi^4$ $\hbar=10^{-27} erg*s$ $\rho c_t \xi^4 \rightarrow 1(g/cm^3) *4*10^{5}(cm/s) *(5*10^{-7})^4 \sim 25*10^{-21} erg*s$ just compare dimensionally $\hbar \rightarrow \rho c a_B^4$⏎ ⏎ # Parents * Fine structure constant
Sign in to add a new comment