Loading [MathJax]/jax/output/HTML-CSS/jax.js
Now you are in the subtree of Energetic stability of quasicrystals project. 

Derivation of Ginzburg-Landau

We need to calculate free energy, Ω=TlnZ, for Hamiltonian H=H0+V. From perturbation theory, the partition function

Z=eβH=eΩ0n(1)nn!dτ1...dτnTτV(τ1)...V(τn),

where V(τ)=eH0τVeH0τ is the perturbation in the interaction representation. The series can be resummed using the linked cluster theorem, yielding

ΔΩ=1βn(1)nndτ1...dτnTτV(τ1)...V(τn)conn,

such that Z=eΩ0+ΔΩ.

Now, if we consider the specific case of electron-ion interaction, V=k,qvqρqψk+qψk. Then,

ΔΩ(2)=12βdτ1dτ2Tτk1,q2vq1ρq1ψk1+q1ψk1|τ1k2,q2vq2ρq2ψk2+q2ψk2|τ2conn=|vqρq|22βdτ1dτ2Gp(τ2τ1)Gpq(τ1τ2)=|vqρq|22βdτ1dτ2Gp(τ2τ1)Gpq(τ1τ2)=|vqρq|22βωn,pGp(ωn)Gpq(ωn).

Here, the electronic Green functions are G(τ)=Tτψ(τ)ψ(0) and G(ωn)=[iωnϵ]1.

Similarly,

ΔΩ(3)=v3q0ρq1ρq2ρq33βωn,kG1(ωn)G2(ωn)G3(ωn),

where we assume that in every vertex the momentum transfer is the same in magnitude (density condenses always on the ring of radius q0) and the interaction is isotropic (does not depend on the direction of momentum transfer). The subscript of Green functions indicates electron momentum that corresponds conserving momentum in every interaction vertex.

Finally, the 4th order contribution is

ΔΩ(4)=v4q0ρq1ρq2ρq3ρq44βωn,kG1(ωn)G2(ωn)G3(ωn)G4(ωn).

Some references that we can use for comparison of coefficients in various orders are Melikyan [1] and and older paper by Yao [2]

References

  1. Melikyan-Norman PRB
  2. H. Yao et al., Phys. Rev. B 74, 245126 (2006)