Derivation of Ginzburg-Landau
We need to calculate free energy, Ω=−TlnZ, for Hamiltonian H=H0+V. From perturbation theory, the partition function
Z=e−βH=e−Ω0∑n(−1)nn!∫dτ1...dτn⟨TτV(τ1)...V(τn)⟩,
where V(τ)=eH0τVe−H0τ is the perturbation in the interaction representation. The series can be resummed using the linked cluster theorem, yielding
ΔΩ=−1β∑n(−1)nn∫dτ1...dτn⟨TτV(τ1)...V(τn)⟩conn,
such that Z=eΩ0+ΔΩ.
Now, if we consider the specific case of electron-ion interaction, V=∑k,qvqρqψ†k+qψk. Then,
ΔΩ(2)=−12β∫dτ1dτ2⟨Tτ∑k1,q2vq1ρq1ψ†k1+q1ψk1|τ1∑k2,q2vq2ρq2ψ†k2+q2ψk2|τ2⟩conn=|vqρq|22β∫dτ1dτ2Gp(τ2−τ1)Gp−q(τ1−τ2)=|vqρq|22β∫dτ1dτ2Gp(τ2−τ1)Gp−q(τ1−τ2)=|vqρq|22β∑ωn,pGp(ωn)Gp−q(ωn).
Here, the electronic Green functions are G(τ)=−⟨Tτψ(τ)ψ†(0)⟩ and G(ωn)=[iωn−ϵ]−1.
Similarly,
ΔΩ(3)=−v3q0ρq1ρq2ρq33β∑ωn,kG1(ωn)G2(ωn)G3(ωn),
where we assume that in every vertex the momentum transfer is the same in magnitude (density condenses always on the ring of radius q0) and the interaction is isotropic (does not depend on the direction of momentum transfer). The subscript of Green functions indicates electron momentum that corresponds conserving momentum in every interaction vertex.
Finally, the 4th order contribution is
ΔΩ(4)=v4q0ρq1ρq2ρq3ρq44β∑ωn,kG1(ωn)G2(ωn)G3(ωn)G4(ωn).
Some references that we can use for comparison of coefficients in various orders are Melikyan [1] and and older paper by Yao [2]