Now you are in the subtree of Energetic stability of quasicrystals project. 

Third order GL term

Here we derive the form of the 3rd order GL term due to the interaction between ions mediated by itinerant electrons.

$$\Delta \Omega^{(3)} = -\frac{v_{q_0}^3 \rho_{q_1} \rho_{q_2}\rho_{q_3}}{3 \beta} \sum_{\omega_n, k} G_1(\omega_n) G_2(\omega_n)G_3(\omega_n),$$

where $\epsilon_1 = \epsilon_k$, $\epsilon_2 = \epsilon_{k - q_1}$, and $\epsilon_3 = \epsilon_{k - q_1 - q_2}$, and $q_1 + q_2 + q_3 = 0$. By contour integration,

$$\Delta \Omega^{(3)} = -\frac{v_{q_0}^3 \rho_{q_1} \rho_{q_2}\rho_{q_3}}{3} \sum_{ k} \frac{n_F(\epsilon_1)}{(\epsilon_1 - \epsilon_2) (\epsilon_1 - \epsilon_3)}+ \frac{n_F(\epsilon_2)}{(\epsilon_2 - \epsilon_1) (\epsilon_2 - \epsilon_3)} + \frac{n_F(\epsilon_3)}{(\epsilon_3 - \epsilon_1) (\epsilon_3 - \epsilon_2)}\\ \equiv \lambda(q_0) \rho_{q_1} \rho_{q_2}\rho_{q_3}. $$

The last equality follows from the assumption that densities condense only with a preferred wavevector magnitude, $|q_{1,2,3} | = q_0$, and hence $q_i$ form an equilateral triangle. Naturally, one expects that $\lambda(q_0)$ is singular when $q_0 = 2k_F \cos(\pi/6) = \sqrt{3} k_F$, i.e. when the triangle is inscribed into the Fermi sphere/circle.